CS 1V ISI Bangalore 23 Feb 2023

Midterm Examination

Write your roll number in the space provided on the top of each page.
Write your solutions clearly in the space provided after each problem. You may use
additional sheets for working out your solutions; attach such sheets at the end of
the question paper. Attempt all problems.

Name and Roll Number:

Problem | Points | Score

1 7
2 4
3 4
4 15
o 15
6 15
7 15

Total: 75

Roll Number: CS IV, Midterm Examination (23 Feb 2013) Page 2 of 6
1. Consider the following code.

def brian(n):
count = 0
while (n !'= 0)
n=né& (n-1)
count = count + 1

return count

Here n is meant to be an unsigned integer. The operator & considers its arguments in binary
and computes their bit wise AND. For example, 22 & 15 gives 6, because the binary (say
8-bit) representation of 22 is 00010110 and the binary representation of 15 is 00001111, and
the bit-wise AND of these binary strings is 00000110, which is the representation of 6.

(a) What does brian(22) return?
Answer: 3
(b) Suppose n = Ef:o b;2¢, where each b; € {0,1}. What does brian(n) return?
Answer: Zf:o b
2. Assume that two sorted lists are given:
L1 = a1 <ar<---<aiy
Lo = by <by<---<bis

What algorithm will you use to determine if the two lists have an element in common, if
you are only allowed comparisons between elements of the two lists? (We wish to perform
the minimum number of comparisons in the worst case, where each comparison has the
form x <=y or x ==y. In a couple of sentences sketch an idea that requires fewer than 65
comparisons.)

Solution: Merge the two lists by comparing the elements of the two lists using the
comparisons of the form a; < b;. This requires at most 17 4+ 15 — 1 = 31 comparisons.
Now, we compare each b; with any a; that appears adjacent to it in the merged list. This
way, we will be able to find all equal pairs, with an addition 30 comparisons, that is, 61
comparisons in all. [In fact, we may notice that whenever a b; immediately precedes an
a; in the merged list, then b; < a;. So we need only check for equality between a b; to
an a; that immediately precedes it. So, we need no more than 31+ 15 = 46 comparisons

in all.]
The number of comparisons performed in the worst case is 46
3. Perform a breadth-first search on the directed graph given below, starting from vertex s,

and exploring the list of neighbours of vertices in the alphabetical order: s, t, u, v, w, x.
Draw the BFS tree, with the root on top, and the children of each vertex written from left
to right in the order in which they were visited.

Roll Number: CS IV, Midterm Examination (23 Feb 2013) Page 3 of 6

O,

Solution: In the notation, tree = (root, list of subtrees), the BFS tree is

(s, [(v, [, DD, (w, [(a, DD, (2, DD)-

4. Suppose A is an n x n array of integers, indexed by {0,1...,n—1} x{0,1,...,n—1}. We
would like to find the minimum of these n? integers. We are told that the array has the
following property.

Every column has a unique minimum. Let 7(j) be the row number of the minimum
element in column j. Then, fori=1,...,n — 1, we have r(j) > r(j — 1). E.g.,

To] [14] 19 25 25

13 19 24 18 18
12 15 17 12 14

20 18 16 18

5 27 18 [11] [10]]

The boxed entries are the minima, and as we scan the columns from left to right,
the box in the next column is not higher than the box in the previous column.

Describe an efficient algorithm to find the minimum element using binary comparisons
between elements of the array. Using a recurrence (or otherwise) derive an upper bound on
the number of comparisons made by your algorithm.

Solution: Let us denote the number of comparisons needed for an array with r rows
and ¢ columns by T(r,c), assuming that the property assumption the minima holds
for array. Compute ¢ be the index of the middle column and find its minimum (using
(r — 1) comparisons)—say it is row i. The minima to the left of column ¢ appear in
rows 1,...,7 and those to its right appear in rows i,...,r. Solve the two subproblems
separately and combine their answer with two more comparisons. We get

T(r,c) <maxT(i,c¢/2)+T(r—i+1,¢/2)+r—1+2.
3

Expanding the recurrence a few times, allows us to conclude that the following bound
holds:
T(T‘,C) < (T+2)—|—(T—|—4)—|—(7‘—|—8)_|_..._+_(T+21+10g0)'

Thus, T(r,c) = O(rlogc+ c).

Roll Number: CS IV, Midterm Examination (23 Feb 2013) Page 4 of 6

5. Let G be an undirected graph, which is represented using a vertex list V and an adjacency
list Adj. Suppose a dfs has been performed on G, and the following values have been
recorded for each vertex v: v - dfslevel, which records the dfs level of the vertex (each root
has level 0), v - parent, which gives the parent of vertex v, and v - lownumber, which records
the smallest dfs level of a vertex reachable from v by taking some (maybe zero) tree edges
(directed from a parent to the child) followed by at most one back edge. Now, recall that an
edge of G is called a cut edge if its deletion increases the number of connected components.

(a) State true or false: every cut edge of the graph is a tree edge.

Answer: true

(b) Assume that the above dfs information is available already. What algorithm would
you use to determine all the cut edges in G?

Solution: We consider vertices v € V, and whenever the condition v - parent # Nil
AND v - lownumber > v - parent - dfsnumber holds, we declare the edge (v - parent, v)
a cut edge. This can be implemented as follows.
list_of_cut_edges = []
for v in V:
if v.parent != None:
if v.parent.dfslevel < v.lownumber:
list_of_cut_edges.append((v.parent,v))

(c) How long does your algorithm take? Assume that the graph has n vertices and m
edges. Briefly justify your estimate.

Solution: The above method goes through the list of vertices once and for each
vertex in the list does a constant amount of work. So the running time is O(n).

Roll Number: CS IV, Midterm Examination (23 Feb 2013) Page 5 of 6
6. Suppose you are given a directed graph G (again as (V,Adj)), where vertices represent
locations in Bengaluru and the directed edges represent connectivity by buses. We wish to
buy ice for a post midterm partyE We are given a list P, indexed by vertices, where P[v]
gives the price/kg of ice at vertex v; if ice is not available at v, then P[v] = oc.

(a) Design an efficient algorithm to determine for each location in Bangalore, the place
from where we can buy ice at the lowest price in order to hold the party at v. (Note
that we should be able to go to the shop and also return to the location where the
party will be held!) Your algorithm should produce a list L indexed by vertices of G,
where L[v] gives the location from where we can buy ice to hold the party at location
v. You do not have to supply the code. State informally, but precisely, the steps you
would perform.

(b) What is the running time of your algorithm, if the graph has n vertices and m edges?
Briefly justify your estimate.

1We are aware that a successful party requires more than just ice, but a midterm problem must be kept simple
(and legal).

Roll Number: CS IV, Midterm Examination (23 Feb 2013) Page 6 of 6

7. Recall Dijkstra’s algorithm for finding shortest paths from a vertex s. Assume that G has
no edges with length zero.

(a) Fill in the blanks in the code below so that at the end, for each vertex v, the number
of shortest paths from s to v is recorded in v - pathcount.
def single_source(s):
global H
for v in vertex_list: # initialization
(v.dist, v.prev, v.pathcount) = (INFINITY, None, 0)
(s.dist, s.pathcount) = (0, 1)
H=[]
makeheap(H, vertex_list) # add all vertices to the heap
while H:
u = deletemin(H)
for (v, ell) in u.out_nbrs: # ell is the length of (u,v)
if v.dist > u.dist + ell:
(v.dist, v.prev) = (u.dist + ell, w)
bubble_up(H,v)
v.pathcount

#
elif v.dist == ______________________
#
v.pathcount = ___________________
(b) Why is your algorithm correct? (E.g., state the invariant condition concerning the

pathcount attributes of the various vertices that holds at the beginning of each iteration.
You don’t necessarily have to formally establish that the invariant holds.)

(c) Will your algorithm (as stated) work correctly if there are edges with length 07 Provide
a justification or a counter-example.

