
ISI-B Design and Analysis of Algorithms Autumn 2023
1. Recall the extension of Euclid’s algorithm that we discussed in class.

1 def extended_Euclid(a,b):
2 """
3 a, b are non -negative integers
4 The function returns (u, v, d) such that d = gcd(a,b)
5 and d = ua + vb
6 """
7

8 if b == 0: return (1, 0, a)
9 (u, v, d) = extended_Euclid(b, a % b)

10 return (v, u - v * (a//b), d)

We argued in class that the algorithm correctly returns (u, v, d) as stated in the
comment in the beginning of the code. Suppose for a certain input (a, b), where
a > b ≥ 1, the call to extended_Euclid(a, b) executes line 9 a total of t times (where
t ≥ 1). Let the value of (a, b) in the i-th call to extended_Euclid(a, b) be (ai, bi);
let (a0, b0) = (a, b). Let the value (u, v) returned by the i-th call be (ui, vi), so that
uiai + vibi = d; thus (ut, vt) = (1, 0). Then, for i = 1, 2, . . . , t, we have[

ai−1

bi−1

]
=

[
qi 1
1 0

] [
ai
bi

]
;

[
ui−1 vi−1

]
=

[
ui vi

] [0 1
1 −qi

]
,

where qi is the quotient obtained on dividing ai−1 by bi−1.

(a) Show that |ui| ≤ bi/d and |vi| ≤ ai/d, where d = gcd(a, b). You may use
induction to show that the claim holds for i− 1 assuming it holds for i; what is
the base case?

(b) Suppose a and b are n-bit integers. Show that the total number of bit operations
needed for extended_Euclid(a, b) is O(n3), assuming that integer division of ℓ-bit
integers can be done in using O(ℓ2) bit operations.

2. Consider the following modification to Euclid’s algorithm.
1 def modified_Euclid(a,b):
2 """
3 a, b are non -negative integers
4 The function returns (u, v, d) such that d = gcd(a,b)
5 and d = ua + vb
6 """
7

8 if b == 0: return a
9 r = a % b

10 if r < b/2:
11 return modified_Euclid(b, r)
12 else:
13 return modified_Euclid(b, b-r)

(a) Argue that for integers a > b > 0, modified_Euclid(a, b) returns the gcd of a and
b.
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(b) How many times is modified_Euclid called recursively after modified_Euclid(a, b)

is called with Fibonacci numbers a = Ft+1 and b = Ft?

3. Describe an algorithm to determine if a given positive number N ≥ 2 can be written in
the form N = QE, where Q and E are both integers at least 2. For n-bit numbers N ,
your algorithm should run in time O(nk) for some small constant k (fixed independent
of n).

4. Suppose x, y and ℓ are n-bit numbers, such that x > y. Suppose the binary expansion
of the fraction x/y is

0.b0b1b2b3 . . . =
∑
i≥1

bi2
−i,

which in general may not terminate. Describe an algorithm to determine bℓ, given x,
y and ℓ. Your algorithm should run in time O(nk) for some small constant k (fixed
independent of n).

(Due 30 Aug 2023)

5. Here is a problem closely related to quicksort, which we briefly discussed in class.
Let X be a totally ordered set with at least n elements. Suppose x1, x2, . . . , xn are
drawn from X uniformly without replacement, and these elements are inserted into
a binary search tree one after another.

(a) There is an ordering for which n(n − 1)/2 comparisons need to be made. How
many such orderings are there?

(b) Suppose i > j. We wish to determine the probability that xi will be compared
with xj, when xj is eventually inserted. Consider the distribution of x1, x2, . . . , xi

and xj. Now, xj is equally likely to appear in any of the i + 1 gaps when
x1, x2, . . . , xi are arranged in sorted order. For xi and xj to be compared (when
xj is eventually inserted), in which gaps must xj fall? (Notice how the answer
to this part is related to the previous part.)

(c) Conclude that the expected number of comparisons for building the binary search
tree is precisely

n∑
i=1

(
2

i+ 1

)
(n− i),

and show that this quantity is at most 2(n− 1) ln(n+ 1).

6. (a) A[1..m] and B[1..n] are two lists of integers sorted in ascending order. We wish to
determine the k-th largest element in the union of A and B. Give an algorithm
that runs in time O(logm + log n). Assume that the m + n elements are all
distinct.

(b) Suppose A[1..m; 1..n] is an m×n array of integers. Suppose, first each row of A
is sorted independently in ascending order from left to right; then, the columns
of A are sorted independently in ascending order from top to bottom. Show that
the rows of A remain sorted in the final array.
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7. Problem 2.23 of [DPV].

8. Problem 2.32 of [DPV].

9. Suppose we are given a sequence b = b0b1 . . . bm−1 ∈ {+1,−1}m called text and an-
other shorter sequence a = a0a1 . . . an−1 ∈ {+1,−1}n called pattern (we use {+1,−1}
instead of {0, 1}), we say that a occurs in b at position j if j ≤ m−n, and ak = bj+k

for k = 0, 1, . . . , n− 1. Notice that a occurs in b at position j iff
∑n−1

k=0 akbk+j = n.

(a) Describe polynomials A(X) and B(X) whose coefficients are derived from a
and b such that by examining the coefficients of C(X) = A(X)B(X), we can
determine if a occurs in b at position j.

(b) Now, suppose some of the elements of the pattern a are allowed to be ⋆, and we
say that a occurs in b at position j if j ≤ m− n and (ak = ⋆ or ak = bj+k) for
k = 0, 1, . . . , n− 1. In this new setting, how would you modify the polynomials
above to determine if a occurs in b at position j?

(c) Based on the above, what method would you use to determine all positions j
such that a occurs in b at position j. How long would it take? When is this
method preferable to brute force search?

(Due 11 Sep 2023)

10. Suppose G = (V,E) is an undirected unweighted graph with n vertices and m edges.
Suppose s, t ∈ V are vertices of G whose distance in G is strictly greater than n/2.
Show that there is a vertex (other than s and t) whose deletion disconnects s from
t. Describe an algorithm (assume that adjacency lists are available) running in time
O(m+ n).

11. Suppose G = (V,E) is a connected undirected graph. Suppose DFS starting at a
vertex v and BFS starting at the same vertex v produce the same tree. Then, show
that G is a tree.

12. Suppose G is a directed graph with n vertices and m edges. Describe an algorithm
(assume adjacency lists are available) running in time O(m+ n) if G has a vertex v
from where every other vertex is reachable.

13. Problem 3.28 (page 106) of [DPV].

14. Problem 4.19 (page 130) of [DPV].

(Due 27 Sep 2023)

15. Consider the Bellman-Ford algorithm (see the code below) for determining the short-
est distance in a weighted graph from a source vertex s to all other vertices. For all
vertices v, the algorithm maintains v · dist and v · parent. Assume the graph has no
negative-weight cycle. Prove or disprove (to disprove provide a counter example) the
following statements:
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(a) at every point in the execution of the algorithm, for every vertex v with v · dist <
∞, the directed path (written backwards here):

v← v.parent← v.parent.parent← · · ·

leads from s to v;
(b) the cost of this path is v · dist.

16. In the Bellman-Ford algorithm, one picks an edge (u, v) such that

u.dist+ ℓ(u, v) < v.dist,

and sets v.dist = u.dist+ ℓ(u, v). (If no such edges exist, we stop.) To locate the next
edge to perform this update operation, the algorithm scans the edges in a fixed order
in each iteration. Could we have picked the next edge to update arbitrarily? Show
that for all large n, there is an acyclic weighted graph with n vertices and an order of
updates (each update should reduce v.dist for some vertex v), so that the algorithm
performs 2Ω(n) updates before it terminates.)

17. Consider the following part of the code for the Bellman-Ford algorithm.
1 s.dist = 0
2 s.parent = None
3 for i = 1, 2, ..., T: # the outer for loop
4 for v in V:
5 for (w,ell) in adj[v]:
6 if v.dist + ell < w.dist:
7 w.dist = v.dist + ell # update distance
8 w.parent = v # update parent

Show the following (when appropriate use induction; state the induction hypothesis
precisely):

(a) At all times, for all vertices v, if u = v.parent is not None, then u.dist+ ℓ(u, v) ≤
v.dist.

(b) If v.dist was updated in iteration k of the outer for loop, then the first k + 1
elements of the sequence

v, v.parent, v.parent.parent, . . . (1)

are not None .
(c) Suppose T = |V | and v.dist was updated in the last iteration. Argue that the

path described in eq. (1) ends in a cycle, and the sum of the lengths of the edges
of that cycle is negative (beware of ∞).

(d) Suppose there is a negative-weight cycle C reachable from vertex s. Argue that
for some vertex v in C, v.dist will be updated in iteration |V | of the outer for
loop.

18. Consider the following algorithm for finding a minimum weight spanning tree in a
connected undirected graph. Initially, let T consist of an arbitrary vertex v and no
edges. Then, repeatedly add to T the minimum weight edge with exactly one vertex
in T . (This algorithm, similar to Dijkstra’s algorithm, is called Prim’s algorithm.)
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(a) Based on the blue and red rules discussed in class, show that the algorithm is

correct.

(b) Describe an implementation of the algorithm that runs in time O((m+n) log n).
(Assume that you have an implementation of a heap that supports findmin and
deletemin in O(log s) steps, for a heap of s elements; and can build a heap on s
elements in O(s) steps.)

19. Let (S, I) be a matroid (recall the definition we discussed in class).

(a) Suppose A,B ⊆ I, such that |A| < |B|. Show that there is an element x ∈ B\A,
such that A ∪ {x} is independent.

(b) Let I be a maximal independent and let x ̸∈ I. Show that there is a unique
cycle c contained in I ∪ {x}. (A cycle is a minimal dependent set.)

(Due 18 Oct 2023, Wednesday, before the class)

20. (Greedy scheduling) There are n tasks, T1, T2, . . . , Tn. We are given n pairs

(d1, p1), (d2, p2), . . . , (dn, pn),

where di ∈ {1, 2, . . . , n} refers to the deadline of the i-th task Ti, and pi is the penalty
if Ti is not performed by the deadline. Each task needs one unit-length time slot. We
wish to assign to each task a different time slot si in the range {1, 2, . . . , n}. We say
that a task i is delayed under this assignment if si < di. The cost of the assignment
is ∑

j:Tj is delayed

pj.

Show that the following greedy strategy produces an optimal solution.

Consider the task in the monotonically decreasing order of their penalties
(consider tasks with higher penalty earlier). When considering task Ti de-
termine if some time slot that helps it meet the deadline di is still available.
If there is such a slot, set si to be the last slot that still allows it to meet
the deadline. Otherwise, schedule Ti in the last available slot.

State your argument by carefully by establishing that at each stage, there is an
optimal solution that extends the current partial assignment of tasks to slots. State
how you will implement this strategy as an algorithm, and how much time your
algorithm will take in the worst case.

21. (Converse of Kraft’s inequality) We wish to establish the following claim.

If ℓ1, ℓ2, . . . , ℓn are positive integers such that
∑n

i=1 2
−ℓi ≤ 1, then there are

binary strings w1, w2, . . . , wn, where wi ∈ {0, 1}ℓi , and wi is not a prefix of
a wj (whenever i ̸= j).

Consider the following greedy method. Maintain a set S consisting of available
strings. Start with the initial set S = {Λ}, where Λ is the empty string. At the
i-th iteration, determine wi by performing the following steps.
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• Find the longest string w in S of length ℓ ≤ ℓi;

• Set wi ← w0ℓi−ℓ = w

ℓi−ℓ︷ ︸︸ ︷
000 · · · 0;

• If ℓ = ℓi, then S ← S \ {w}; otherwise,

S ← (S \ {w}) ∪ {w1, w01, w001, . . . , w
ℓi−ℓ−1︷ ︸︸ ︷
00 · · · 0 1}.

(To understand what is happening, draw a tree whose leaves correspond to
w1, w2, . . . , wi, and the strings in S.)

(I) What assignment of codewords does this algorithm produce for the following
sequence (ℓ1, ℓ2, . . . , ℓ8): 3, 4, 3, 4, 2, 3, 4, 3. You may represent the assignment
as a tree with leaves labelled 1, 2, . . . , 8.

(II) Without assuming anything about the order in which the numbers ℓi are pre-
sented, show that the above method is correct; in particular, you must state why
the algorithm never gets stuck. You might to want use induction to establish
that the following hold before each iteration.

(a) The lengths of the strings in S are all ;
(b) After wi has been assigned;

∑
j>i 2

−ℓj ≤
∑

w∈S .

22. Suppose the m edges of a graph on vertex set {1, 2, . . . , n} are stored on a tape in the
form e1, e2, . . . , em. Design an algorithm that uses O(n) space (assume that vertices
and pointers can be stored in one cell of memory) and after performing one scan
of the tape, determines if the graph is bipartite. (Hint: you might want to use a
union-find data structure to keep track of the color classes of the graph as it is being
built edge by edge.)

23. Problem 6.20 on page 184 of [DPV].

24. You have to prepare a five-volume collection of articles on algorithms. The lengths
of the available articles (in number of pages) are as follows: ℓ1, ℓ2, ℓ3, . . . , ℓn, where ℓ1
corresponds to the first article published on the subject, ℓ2 corresponds to the next
article, and ℓn corresponds to the most recent article. The articles must be published
subject to the following constraints.

• No volume is allowed to have more that 300 pages.

• Every selected article must start on a fresh page, and must appear completely
in one volume.

• All articles in volume i + 1 must have been published after all the articles in
volume i.

Describe a method based on dynamic programming to determine a plan for publish-
ing the maximum number of articles in the five-volume collection under the above
constraints. The output must indicate which articles go into each volume. How long
will your algorithm take? [Hint: Let N [i, j] denote the minimum total number of
pages (including blank pages at the end of volumes) needed to pick i articles from

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
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the first j. Of course, you don’t have to use this hint. For full credit, your solution
must remain efficient even if each volume is allowed A pages, and we wish to have at
most B volumes in all (then, the running time of the algorithm should be a polyno-
mial of small degree in A, B and n); e.g., a solution that says that there can be at
most 1800 articles, so the number of possibilities is bounded by O(n1800), would not
be considered efficient!]

(Due 1 Nov, Wednesday, before the class)

25. You may use the König-Egerváry theorem proved in class (or Hall’s theorem: a
bipartite graph G = (V,W,E) has a matching saturating V iff for all subsets U ⊆ V ,
|N(U)| ≥ |U |).
(a) Suppose G = (U, V,E) is a bipartite graph where every vertex has the same

degree r ≥ 0. (Such a graph is called an r-regular graph.) Show that G has a
perfect matching. Show that E = E1∪E2∪· · ·∪Er (disjoint union), where each
Ei is a matching. (Make sure your proof works even if E has parallel edges, but
no self-loops.)

(b) A school with 20n children is to go on an excursion in n buses, each carrying 20
children. The principal and vice-principal of the school draw up two different
plans to assign the children to the n buses. One does not know in advance which
plan will be chosen. Now, one needs to assign a bus monitor for each bus from
among the children travelling on the bus (and provide them cell phones). Show
that there is a common set S of n children who can serve as bus monitors, no
matter which plan is eventually chosen.

(c) Suppose H is a finite group and K is a subgroup of H. Consider the left cosets
L = {hK : h ∈ H} and the right cosets R = {Kh : h ∈ H} of K. Show that
there is a set S ⊆ H of |H|/|K| elements which can simultaneously serve as
coset representatives for the cosets in L and the cosets in R.

26. Let f ∗ : E → R≥0 (non-negative reals) be the maximum flow in a network G =
(V,E, (ce : e ∈ E)). Let f be a flow in G, and let ∆ = val(f ∗)− val(f).

(a) Show that there is a flow g∗ in Gf (the residual network corresponding to the
flow f) of value ∆. Note that g∗ must assign flows only to the edges of Gf and
should respect their capacities as defined in Gf .

(b) Show that there is a path in Gf with bottleneck capacity at least ∆/|E|.

27. Given a residual network Gf as above, show how a path with maximum bottleneck
capacity can be found in time O((|V | + |E|) log |V |). Conclude that for a network
with integer capacities, if the flow is repeatedly augmented using an augmenting path
of maximum bottleneck capacity, then a maximum flow f ∗ will be obtained after at
most ⌈m ln val(f ∗)⌉ augmentations. (You may use the inequality 1+x ≤ ex, valid for
all x ∈ R.)

28. Problem 7.17 of [DPV].

29. Problem 8.2 of [DPV].
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30. Problem 8.4 of [DPV].

31. (Extra credit, simultaneous rounding via network flows) Let x1, . . . , xn be real
numbers and let σ be a permutation of {1, . . . , n}. We will write

Sk = x1 + · · ·+ xk , Σk = xσ(1) + · · ·+ xσ(k) , 0 ≤ k ≤ n ,

for the partial sums in the two orderings. Assume 0 < xi < 1, and Sn = m is an
integer. Our goal is to round each xk to x̄k ∈ {0, 1} such that the rounded partial
sums

S̄k = x̄1 + · · ·+ x̄k , Σ̄k = x̄σ(1) + · · ·+ x̄σ(k),

also satisfy
⌊Sk⌋ ≤ S̄k ≤ ⌈Sk⌉ , ⌊Σk⌋ ≤ Σ̄k ≤ ⌈Σk⌉

for 0 ≤ k ≤ n. We will call this simultaneous rounding.

(a) Show a rounding algorithm that determines x̄1, . . . , x̄n satisfying the first condi-
tion

⌊Sk⌋ ≤ S̄k ≤ ⌈Sk⌉.

(b) The required simultaneous rounding will be obtained using network flows. Con-
struct the following network with nodes

{s, a1, . . . , am, u1, . . . , un, v1, . . . , vn, b1, . . . , bm, t}

and the following arcs:

s→ aj : for j = 1, 2, . . . ,m;

bj → t : for j = 1, 2, . . . ,m;

uk → vk : for k = 1, 2, . . . , n;

aj → uk : if [j − 1, j) ∩ [Sk−1, Sk) ̸= ∅;
vσ(k) → bj : if [j − 1, j) ∩ [Σk−1 . . .Σk) ̸= ∅.

All edge capacities are 1.

(i) Show that there is an s-t cut of value m in this network.
(ii) Show that there is an s-t flow of value m in this network. (This is the key.)
(iii) Argue that there is an integral flow of value m in this network.
(iv) Use the integral flow of the previous part to construct a simultaneous round-

ing.

(Due 15 November, if possible)
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